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Abstract

These lectures review phases and phase transitions of the Standard Model, with
emphasis on those aspects which are amenable to a first principle study. Model calcu-
lations and theoretical ideas of practical applicability are discussed as well. Contents:
1.Overview; 2. Field Theory at Finite Temperature and Density; 3.Critical Phenom-
ena; 4.Electroweak Interactions at Finite Temperature; 5. Thermodynamics of Four
Fermions models; 6.The Phases of QCD; 7.QCD at Finite Temperature, µB = 0; 8.QCD
at Finite Temperature, µB 6= 0.
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1 Overview

The aim of these lectures is mostly practical: I would like to describe the status of our
understanding of phases, and phase transitions of the Standard Model relevant to cosmology
and astrophysics, and to provide the tools to follow the current literature. My goal is
to present results obtained from first principle calculations, together with open problems.
Theoretical ideas which have inspired model builders, and the results coming from such
model calculations will be discussed as well.

The main phenomena are the ElectroWeak finite temperature transition, occurring at
an energy O(100 Gev) and the QCD finite temperature transition(s), occurring at energies
O(100 Mev), within the range of current experiments at CERN and Brookhaven. The role
of a (small) baryon density in QCD will be considered as well.

Only the equilibrium theory shall be considered. The main reasons are, firstly that
equilibrium statistical mechanics is enough to characterize many aspects of these phase
transitions, secondly that , at variance with non-equilibrium, equilbrium techniques are well
consolidated, and at least some interesting results are already on firm ground. The last but
not the least element in this choice is, of course, my personal expertise.

The material is organised as follows: Section 2 reviews a few basics idea, including the
general idea of dimensional reduction, and universality. Section 3 collects those basic facts
on phase transitions, critical phenomena, and spontaneous symmetry breaking which are
relevant to the rest. Section 4 discusses the high temperature Electroweak transition : there,
the perturbative version of dimensional reduction will be seen at work, and the role of lattice
studies in elucidating crucial aspects of the Standard Model will be emphasized. Section 5
introduces fermions, offers the opportunity of contrasting lattice and 1/N expansions results,
and presents the phase diagram of four fermion models, which have a similar chiral symme-
try as QCD. A general discussion on the phases of QCD, and qualitative aspects of phase
transitions, is given in Section 6. Section 7 presents the status of the high temperature QCD
studies, discusses in detail the symmetry aspects of confinement and chiral transition, and
the “non–perturbative” dimensional reduction. In Section 8 we study QCD with a non–zero
baryon density. The results for the phase diagram of the two color model are discussed in
detail, together with the problems and possibility for an ab initio study of three color QCD.
In addition, it is stressed that lattice not only makes a numerical “exact” study possible, but
it is also amenable to an analytic treatment: the strong coupling expansion. We conclude
by reviewing recent work which, combining universality arguments, model calculations and
lattice results, suggests the existence of a genuine critical point in the QCD phase diagram.

Recent reviews and further readings include [1] [2] [3] [4] [5]. Closely related aspects
not covered here include non–equilibrium phenomena [6], recent developments on the high
temperature expansion in QCD [12], beyond-the-standard-model developments [7], [8], model
calculations in the high density phase of QCD [13].
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2 Equilibrium Field Theory at Finite Temperature

The basic property of equilibrium field theory is that one single function, Z, the grand
canonical partition function, determines completely the thermodynamic state of a system

Z = Z(V, T , µ) (1)

Z is the trace of the density matrix of the system ρ̂

Z = Trρ̂ (2)

ρ̂ = e−(H−µN̂)/T (3)

H is the Hamiltonian, T is the temperature and N̂ is any conserved number operator. In
practice, we will only concern ourselves with the fermion (baryon) number.

Remember that Z determines the system’s state according to:

P = T
∂lnZ

∂V
(4)

N = T
∂lnZ

∂µ
(5)

S =
∂T lnZ

∂T
(6)

E = −PV + TS + µN (7)

while physical observables < O > can be computed as

< O >= TrOρ̂/Z (8)

Any of the excellent books on statistical field theory and thermodynamics can provide
a more detailed discussion of these points. I would like to underscore, very shortly,that the
problem is to learn how to represent Z at non zero temperature and baryon density, and
to design a calculational scheme. In this introductory chapter we will be dealing with the
first of these tasks. Interestingly, the representation of Z which we review in the following
naturally leads to an important theoretical suggestion, namely dimensional reduction.

2.1 Functional Integral Representation of Z

Consider the transition amplitude for returning to the original state φa after a time t

< φa|e
−iHt|φa >=

∫

dπ
∫ φ(x,t)=φa(x)

φ(x,0)=φa(x)
dφei

∫ t

0
dt

∫

d3x(π(~x,t)
∂φ(~x,t)

∂t
−H(π,φ)) (9)

Compare now the above with expression (2) for Z, and make the trace explicit:

Z = Tre−β(H−µN̂) =
∫

dφa < φa|e
−β(H−µN)|φa > (10)

We are naturally lead to the identification

β ≡
1

T
→ it (11)
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In Figure 1 we give a sketchy view of a field theory on an Euclidean space. Ideally,
the space directions are infinite, while the reciprocal of the (imaginary) time extent gives
the physical temperature. We note that studying nonzero temperature on a lattice [16] is
straighforward: one just taks advantage of the finite temporal extent of the lattice, while
keeping the space directions much larger than any physical scale in the system.

d-dimensional space

Imaginary time

    and

Temperature
Inverse 

Figure 1: Sketchy view of the d+1 dimensional Euclidean space. The imaginary time is the inverse of the
physical temperature of the system.

We need now to specify the boundary conditions for the fields. Let us introduce the
integral S(φ, ψ) of the Lagrangian density (from now on we will always use 1/T as the upper
extremum for the time integration).

S(φ, ψ) =
∫ 1/T

0
dt

∫

ddxL(φ, ψ) (12)

Z is now written as

Z =
∫

dφdψe−S(φ,ψ) (13)

To find out the boundary condition for the fields, we study the thermal Green functions
describing propagation from point (~y, t = 0) to point (~x, t = τ) Consider the bosons first:

GB(~x, ~y; τ, 0) = Tr{ρ̂Tτ [φ̂(~x, τ)φ̂(~y, 0)]}/Z (14)

where Tτ is the imaginary time ordering operator:

Tτ [φ̂(τ1)φ̂(τ2)] = φ̂(τ1)φ̂(τ2)θ(τ1 − τ2)+φ̂(τ2)φ̂(τ1)θ(τ2 − τ1) (15)

Use now the commuting properties of the imaginary time ordering evolution and H:

[Tτ , e
−βH ] = 0 (16)

togheter with the Heisenberg time evolution

eβHφ(~y, 0)e−βH = φ(~y, β) (17)

to get:
GB(~x, ~y; τ, 0) = GB(~x, ~y; τ, β) (18)
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which implies
φ̂(~x, 0) = φ̂(~x, β) (19)

Now the fermions. Everything proceeds exactly in the same way, but for a crucial difference:
a minus sign in the imaginary time ordering coming from Fermi statistics:

Tτ [ψ̂(τ1)ψ̂(τ2)] = ψ̂(τ1)ψ̂(τ2)θ(τ1 − τ2)−ψ̂(τ2)ψ̂(τ1)θ(τ2 − τ1) (20)

yelding:
ψ̂(~x, 0) = −ψ̂(~x, β) (21)

Hence, fermions obey antiperiodic boundary conditions in the time direction.

2.2 The Idea of Dimensional Reduction

Consider again Figure 1: it is intuitive that when the smallest significant lenght scale of the
system l >> 1/T the system becomes effectively d–dimensional. This observation opens the
road to the possibility of a simple description of many physical situations (see for instance [17]
for a recent review). It is also often combined with the observation that the description of the
system can be effectively ‘coarse grained’, ignoring anything which happens on a scale smaller
than l . Again, this can be pictured in a immediate way on a discrete lattice: the original
system can be firstly discretized on the Euclidean d+1 dimensional space, than dimensionally
reduced to a d dimensional space, and finally coarse grained, still in d dimensions.

In Figure 2.2 we give a cartoon for this two steps procedure: It should be clear that,

l 1/T

Figure 2: Sketchy view of the dimensional reduction from d+1 to d dimensions(from the leftmost to the
middle picture) and subsequent coarse graining (from middle to rightmost)

despite the simplicity and elegance of the idea, both steps are far from trivial. In Section
4 we will discuss the application of these idea to the Electroweak interactions at high tem-
perature, where the dimensional reduction will be carried out with the help of perturbation
theory. In Section 7 we will discuss dimensional reduction and universality for the QCD high
temperature transitions, where the procedure relies on the analysis of system’s symmetries.

In general, there are two typical situations in which these idea can be tried:

1. The temperature is much higher than any mass. This is the basis for the high temper-
ature dimensional reduction, like, for instance, in the high T electroweak interactions.

2. The system is approaching a continuous transition: the correlation length of the system
ξ is diverging. In such situation all the physics is dominated by long wavelength modes.
Not only the system gets effectively reduced, but the coarse graining procedure become
doable. As an effect of this procedure, systems which are very different one from
another might well be described by the same model, provided that the long range
physics is regulated by the same global symmetries: this is the idea of universality
which provides the theoretical framework for the study of the high T QCD transition
[20].
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2.3 Mode Expansion and Decoupling

Fermions and bosons behave differently at finite temperature. Consider infact the mode
expansion for bosons:

φ(x, t) =
∑

ωn=2nπT

eiωntφn(x) (22)

where the periodic boundary conditions for the bosons have been taken into account, and
the analogous for fermions, when boundary conditions become antiperiodic:

ψ(x, t) =
∑

ωn=(2n+1)πT

eiωntψn(x) (23)

In the expression for the Action

S(φ, ψ) =
∫ 1/T

0
dt

∫

ddxL(φ, ψ) (24)

the integral over time can then be traded with a sum over modes, and we reach the conclusion
that a d+1 statistical field theory at T > 0 is equivalent to a d-dimensional theory with an
infinite number of fields.

Dimensional reduction means that only one relevant field survives: this is only possible
for the zero mode of bosons.

2.4 Finite Temperature–Summary

• The partition function Z has the intepretation of the partition function of a statistical
field theory in d+1 dimension, where the temperature has to be identified with the
reciprocal of the (imaginary) time.

• The fields’ boundary conditions follows from the Bose and Fermi statistics

φ(t = 0, ~x) = φ(t = 1/T, ~x) (25)

ψ(t = 0, ~x) = −ψ(t = 1/T, ~x) (26)

i.e. fermionic and bosonic fields obey antiperiodic and periodic boundary conditions
in time.

• “Dimensional reduction”, when ‘true’ means that the system become effectvely 3-
dimensional. In this case only the Fourier component of each Bose field with vanishing
Matsubara frequency will contribute to the dynamics, while Fermions would decouple.

• The scenario above is very plausible and physically well founded, but it is by no means
a theorem. Ab initio calculations can confirm or disprove it.

We conclude this Section by coming back to the first equation, the one defining the partition
funcion Z. All we did so far is to write down Z for a finite temperature and density in
the imaginary time formalism, and to examine some immediate consequences of such a
representation.
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4-d Theory

as in 4 dim.

Apply Standard Field Theory Methods

Lattice discretization combined with Monte Carlo Simulation

Perturbation Theory

Lattice discretization combined with Strong Coupling Expansion

Other non-perturbative methods (e.g. 1/N expansion)Apply standard Field Theory Methods

3-d Theory

Try to reduce the model to 3-d

either via perturbation theory or

a smart guess

Figure 3: Calculational schemes for a 4d theory at a glance

In Figure 2.4 we give a sketch which outlines some of the various possibilities to calculate
Z for a four dimensional model at finite T formulated in the imaginary time formalism.

Two remarks are in order. Firstly, the optimal strategy is model dependent and there is
no general rule which can tell us a priori which is the best way to attach a problem. In the
following we will see the various techiques at work in different models and situations.

Secondly, there are idea which can be of general applicability. This is especially true
for universality, for which a general framework is given by the symmetry analysis, breaking
patterns and theory of critical phenomena. We then devote the next Section to a survey of
this subject.

3 Critical Phenomena

The modern era of critical phenomena begun about fifty years ago, when it was appreciated
that very different fluids might well display universal behaviour: the cohexistence curve,
namely the plot of the reduced temperature T/Tc versus the reduced density ρ/ρc is the
same! This observation has triggered important theoretical developments, in particular it
has emerged that many phase transitions are associated with a spontaneous breakdown of
some symmetry of the Hamiltonian, and that these symmetry changes can be triggered by
temperature [22]. In this Section we briefly review main tools and idea used in this field.

3.1 The Equation of State and the Critical Exponents

In a broad sense, the Equation of State is a relationship among different physical quantities
characterising the critical state of a system, which only depend on a few parameters. For
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instance for fluid systems it was soon realised that a general relationship describing the
cohexistence curve is:

(ρ− ρc) = A
(

T − Tc
Tc

)β

(27)

where Tc, ρc, A depend on the specific fluid under consideration, while the functional form
above with β ≃ 3 holds true for all the fluids which have been studied.

It came then natural to apply the same idea to the critical phenomena in magnetic
systems, identifying, in a completely euristic way, the zero field magnetization M with the
density difference:

M = A
(

T − Tc
Tc

)β

(28)

which can be easily generalised to include an external magnetic field h

h

M δ
= f

(

T − Tc
M1/β

)

(29)

The above equation is the well known equation of state for magnetic systems, in one of its
guises. For h = 0 we recover eq. (28) , together with the definition of the exponent β. For
T = Tc we have

M = h1/δ (30)

and we recognize that δ is the exponent describing the system’s response at criticality. It
is really remarkable that these definitions can be combined in just one relationship, the
equation of state eq.(29). In short summary, then

• The Equation of State contains the usual definition of critical exponents (which is
obtained by setting h = 0 or T = Tc)

• It gives information on the critical behaviour (i.e. the exponent δ) also by working at

T 6= Tc

• It gives information on spontaneous magnetization (i.e. the exponent β) also when

there is an external magnetic field h

The function f, in general, is unknown (it is possible to give some of its properties on general
grounds [18]). It is useful to consider a first order expansion of the Equation of State

h = aM δ + b(T − Tc)M
δ−1/β (31)

which is more easily amenable to a direct comparison with data. Clearly, the range of
applicability of eq.31 is smaller than the one of eq.29.

The idea outlined above can be applied in a broad range of context, including particle
physics. We will discuss very many examples of this in the following, while in the following
Table, as a first example, we summarize a ‘dictionary’ between magnetic systems, bosonic
systems, and fermionic ones, where the order parameter is a composite fermion-antifermion
condensate:
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Magnets Bosons Fermions

External Field h (magnetic field) m (bare mass) m (bare mass)
Response Function M (magnetization) < σ > (m) < ψ̄ψ > (m)
Order Parameter M0 = M(h = 0) < σ > (m = 0) < ψ̄ψ > (m = 0)

The systems above can be described in an unified way via the Equation of State we have
discussed. Systems whose critical behaviour is characterised by the same exponents are said
to belong to the same universality class. This circumstance is of course highly non trivial and
it is rooted in the symmetries of the systems: systems whose critical behaviour is governed
by the same global symmetries are in the same universality class. Strictly speaking this
concept, as well as the equation of state itself,is limited to continuos transitions. Continuous
transition have real divergencies, where the correlation length grows so large that it is possible
to ignore all of the short range physics, but the one associated with the bosonic zero modes
of the system. When this happens details of the dynamics do not matter any more, and
the pattern of symmetries, their spontaneous breaking and realisation, drive the system’s
behaviour.

3.2 The Effective Potential

The Equation of State provides a macroscopic description of the order parameter of the
system close to criticality. It is very useful and interesting to consider an intermediate level
of description (in condensed matter/statistical physics it might be called mesoscopic) where
the behaviour of the order parameter is inferred from its probability distribution (or for any
distribution related with it). In turn, such probability distribution can/should be derived
from the exact dynamics, with the help of a symmetries’ analysis.

Main idea goes back to Landau, and is the following. One is supposed either to guess or
to derive a function Veff of the order parameter and external fields which describes the state
of the system. We draw in Figure 3.2 the familiar plots showing Veff as a function of the
order parameter for several value of the external field (the temperature, for instance). The
minimum of Veff defines the most likely value of the order parameter, and so these plots
determine the order parameter as a function of temperature. Also, for any give temperature
we read off the plots wheater the system is in a pure state (just one minimum), or in a mixed
phase (two non equivalent minima), which is only possible for a first order transition. In the
upper plot we show the behaviour leading to a first order transition. For low temperature
the system is in a phase characterised by a nonzero value of the order parameter. At T = T ∗

(spinodal point) we have the first occurrence of a secondary minimum corresponding to a zero
value of the order parameter, i.e. the onset of a mixed phase. For T = Tc the two minima
are equal, i.e. Tc is the critical point. Beyond Tc the minimum at zero is the dominant one.
At T = T ∗∗ the secondary minimum (for a nonzero value of the order parameter) disappears,
and the mixed phase ends. In the lower diagram it is shown an analogous plot, but for a
continuous (second order) transition. We note that a second order transition can be seen as
a limiting case of a first order transition for T ∗, T ∗∗ → Tc.
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Veff

Veff

Order Parameter

Order Parameter

T*

T_c

T=0

T>>T_c

1st Order

2nd Order

T_c

T>>T_c

 T**

Figure 4: The shape of the effective potential for the order parameter for first order, discontinuous (upper
diagram) and continous transitions.

3.3 A Case Study

The idea discussed above can be nicely elucidated by the Potts model. There, one can find
all possible examples of phase transitions, from continuos to discontinuous, and different
intensities.

Consider the Action for the q-state two dimensional Potts model:

S = −β
∑

δσiσj
(32)

The spin variables σ can be in any of the q-possible states. The sum runs over nearest
neighboors, and, for small β clusters of equal σ are preferred. When β increases there is a
transition to a disordered state, for β = βc.

The model has been analytically solved in a mean field approximation, where one can
calculate βc and the latent heath for any q. The latent heat turn our to be zero for q ≤ 4,
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corresponding to a second order transition, and positive, and increasing with q, for q larger
than 4. For q very close to 4, the behaviour is weakly first order or nearly second order, in
the sense that the first order transition behaves like a second order one, near, but not too
near, the critical point. For instance, the inverse correlation length should obey the law

ξ−1 = A(β∗ − β)ν∗ (33)

where β∗ (to be identified with the T ∗ of the discussion above) and ν∗ can be tought of as the
coupling and critical exponent of the virtual second order transition point in the metastable
region.

This behaviour have indeed been observed in numerical simulations, which can be de-
scribed using the associate Ginzburg Landau model [19]. For instance the transition in the
seven state Potts has a much smaller latent heat than the one with ten states, while the
pseudocritical point β∗ is much closer to βc for T = Tc for seven states than for ten.

One might think that the concept of a weak first order transition is a rather academic
one. Indeed, it contrasts a bit with the familiar notion of an abrupt discontinuous transition,
without precursor effects. It is then amusing to notice that a weak first order behaviour has
been indeed observed not only in liquid cristals–the original de Gennes discussion on weak
first order transitions– but also in the deconfining transition of Yang Mills model with SU(3)
color group-a transition which will be discussed at length in Section 7 – The strength of a
first order transition is also an issue in the discussion of the electroweak transition [23], as
we will review in the next Section.

3.4 Dynamical Symmetry Breaking

It is a fact that often the symmetries of the Hamiltonian are not realised in nature: for
instance the complete translational invariance of a many body system is broken when the
system becomes a cristal, or the chiral symmetry of the QCD Lagrangean is broken when
quarks and antidiquarks condense. The realisation, or lack thereof, of the symmetries of
the Hamiltonian, i.e. the existence of different phases in a system, depends on the thermo-
dynamic conditions. Hence, many phase transitions and critical phenomena are associated
with a symmetry breaking/restoration[24].

One simple model to study this is the Goldstone model

L = (∂µφ
†)(∂µφ) − V (φ) (34)

where φ is a complex scalar field and the potential V (φ) is given by

V (φ) = 1/4λ(φ†φ− η2)2 (35)

The Lagrangian is obviously invariant under U(1) global phase transformation of the field
φ. The only value of the field which realises such invariace is zero.

For positive λ and η2 V (φ) has the well known Mexican hat shape: there is an infinity
of minima of the effective potential for a nonzero value of the field. Once one particular
minimum is selected, φ 6= 0 and the symmetry is broken.

If η is tuned towards zero the global minima disappear, and the symmetry is restored:
the only global minimum is the one corresponding to a zero value for the field.
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It is worth noticing that simple models have also been used as toy models in various
situations in particle, astroparticle or condensed matter physics: the nonrelativistic version
of the Abelian Higgs model is identical to the Ginzburg-Landau model of a superconductor
with φ representing the Coopper pair wave function, the Goldstone model describes the
Bose condensation in superfluids, the σ model can be used to model the QCD high T
phase transition, σ describing the composite < ψ̄ψ > condensate, the three state Potts
model models the deconfining transition in three color Yang–Mills, the spins representing
the Polyakov loop, the non–Abelian Higgs model is used to study the electroweak transition,
φ being in this case the Higgs field, etc. etc.

These toy models are amenable to approximate, mean field studies but to get real predic-
tions one needs to study the full field theory from first principles. It is always very interesting
to try to make contact between the exact results and those derived from simple models and
analysis, so to assess the role of the quantum fluctuations. We will see examples of these
points in the rest of these lectures, beginning with the electroweak transition in the next
Section.

4 Electroweak Interactions at Finite Temperature

We want to know the fate of the spontaneously broken gauge symmetry of the electroweak
interaction at high temperature. This depends on the value of the Higgs mass mH , and
cannot be solved within perturbation theory. This question has been sucessfully addressed
by Laine,Kajantie,Rummukainen,Shaposhnikov in a series of papers [9] [10] [11] [7], and
references therein. These authors have been using an admixture of perturbative dimen-
sional reduction and lattice calculations, which eventually gives the phase diagram of the
Electroweak sector of the Standard model in the mH , T plane. A classical reference on the
ElectroWeak transition and its phenomenological implications is [2].

The essence of the model can be found without inclusion of fermions. This is good news
as, despite substantial progress in the formulation of chiral fermions on the lattice [25],
practical calculations, at least in four dimensions, are still rather difficult. In addition to
disregarding fermions, the effects of the U(1) group shall be neglected as well (sin2θ ≃ 0),
since its effects have been found to be small [10].

All in all, the Lagrangian we study is

L = 1/4F a
µνF

a
µν + (Dµφ)†(Dµφ) −m2φ†φ+ λ(φ†φ)2 (36)

where φ is the Higgs doublet.

4.1 Perturbative Analysis

We begin by briefly reviewing the perturbative results, see [23] [14] [2] for details. Let us

then build an effective potential from the electroweak Action by approximating the field φ̂
by a constant value φ, i.e. neglecting the fluctuations:

V TVeff(φ) =
∫

dtd3xS(φ̂)δ(φ̂− φ) (37)
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The zero temperature tree level results reads is:

Veff(φ, T = 0) = −m2/2φ2 + λ/4φ4 (38)

(we can just consider the discrete φ → −φ symmetry which is enough to describe the
behaviour of the order parameter).

The T > 0 one loop corrections basically are the effects of a non-interacting bose-fermi
gas with frequencies depending on φ (the -/+; +/- signs are for bosons/fermions):

V 1−loop
eff (φ, T ) = T

∑

i

−/+
∫ d3p

(2p)3
ln

∫

1 + /− e−(p2+ω2(φ))1/2/T = (39)

1

2
γφ2T 2 (40)

−
1

3
αφ3T (41)

where both bosons and fermions contribute to the term in φ2T 2 , and the term in φ3T is
from bosons alone. This yields:

Veff(φ, T ) = −
m2

2
φ2 +

1

2
γT 2 −

1

3
αTφ3 +

1

4
λφ4 (42)

=
1

2
γ(T 2 − T ∗2)φ2 −

1

3
αTφ3 +

1

4
λφ4. (43)

We have defined T ∗2 = m2/γ and we will recognize that T ∗ is the pseudocritical point.
At T = 0 we have then the typical case of spontaneous symmetry breaking, with φ2 =

2m2/λ. At ‘large’ T the positive quadratic term γT 2 dominates and symmetry is restored.
The cubic term drives the transition first order. The onset for metastability, i.e. of the

mixed phase, coincides with the first appearance of a secondary miminum. It is then given
by an inflexion point with zero slope:

∂2V

∂2φ
= 0 (44)

∂V

∂φ
= 0 (45)

The solution is, as anticipated, T = T ∗.
The critical temperature, from the equal minimum condition

V (φ1) = V (φ2) (46)

is

Tc = T ∗/
(

1 −
2α2

9λγ

)1/2

> T ∗ (47)

and it depends linearly on the Higgs mass:

Tc = mH/
(

2γ −
4α2

9λ

)1/2

(48)
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As discussed in Section 3.3, the intensity of the transition is given either by the magnitude
of the jump at Tc, 2α/3λ, and by the distance between Tc and T ∗

Tc − T ∗ = T ∗(1/(1 −
2α2

9λγ
)1/2 − 1) (49)

In conclusion the perturbative analysis of the electroweak model at high temperature
predicts a first order transition. The transition weakens when α → 0 or γ → ∞ or λ → ∞,
eventually becoming second order when the strength goes to zero and Tc = T ∗ (cfr. again
the behaviour of the Potts model [19]). Note that the quantum fluctuations are directly
responsible for the weakening of the first order transition [23]. The complete inclusion of
quantum fluctuations, which we are going to discuss, will cause the disappearance of the
phase transition at large Higgs masses.

4.2 Four Dimensional Lattice Study

We know that in the electroweak sector of the Standard Model perturbation theory works
well at zero temperature. As was pointed out in ref. [9] this is not true in general. It has
been recognized that there are several scales in the problem. The smallest, which serves as
a perturbative expansion parameter, is proportional to g2T/m, where m is any dynamically
generated mass. Now, dynamically generated masses will be zero in the symmetric phase,
hence perturbation theory will not be applicable there. And also in the broken phase, ac-
cording to the intensity of the transition, perturbation theory might fail: when the transition
is weakly first order, the mass approaches zero in the broken phase and perturbation theory
is no longer reliable.

The exact approach uses ab initio lattice calculations on a four dimensional grid. These
calculations are extremely expensive. The lattice spacing, which serves as an ultraviolet
cutoff, must be smaller that the reciprocal of any physical energy scale: typically, at very
high temperature, it must be smaller than 1/T . On the other hand, the lattice size in space
direction must be large enough to accomodate the lighter modes which are proportional to
1/g2T , where g is the lattice coupling. As the continuum limit is found for g → 0, also the
requirement on size is quite severe.

In their numerical studies (see [7] for a review) the authors selected a few significant
values for the Higgs mass, and studied the behaviour as a function of the temperature.
The critical behaviour is assessed using the tools developed in statistical mechanics, finite
size scaling of the susceptibilities, search for two states signal, etc. This analysis led to
these results: for small values of the Higgs mass the 4-d simulations agree with perturbation
theory, as expected. The first order line, which in perturbation theory weakens without
disappering, ends in reality, for an Higgs mass ≃ 80Gev. The discovery of such an endpoint
[9] has been a major result, as it shows that there is no sharp distinction between the phases
of the electroweak sector. The properties of this endpoint have been investigated in detail,
confirming its existence, and placing it in the universality class of the 3d Ising model (a
rather general results for endpoints).
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4.3 Three Dimensional Effective Analysis

The main idea of the three dimensional effective analysis [11] is to use perturbation theory
to eliminate the heavy modes, in the general spirit of dimensional reduction: this makes it
definitevly more easy to handle than the four dimensional theory. In the first place, three
dimensions are of course cheaper than four. Secondly, and perhaps even most important,
eliminating the heavy modes makes less severe the demand on lattice spacing. In conclusion,
one can simulate the three dimensional theory on a much coarser lattice than the four
dimensional one. The advantage over the four dimensional simulations is clear.

On the other hand, the three dimensional approach is much better than perturbation
theory: we have noticed that perturbation theory cannot handle the light modes which
might appear close to a (weak first order or second order) phase transition. Instead, the
three dimensional model retain the light modes of the full model, only the heavy modes are
integrated out.

But which model one should simulate? The model has the same functional form as the
original one, i.e. it retains all of the particle content and symmetries:

L =
1

4
F a
µνF

a
µν + (Dµφ)†(Dµφ) −m2

3φ
φ + λ3(φ

†φ)2 (50)

where the subscrit ‘3’ reminds us that we are working in three dimensions. The rule developed
in [11] yields to an expression of (g3, m3, λ3) in terms of the parameters of the four dimensional
model. This is of course not trivial : for instance, in the three dimensional model there is
no ‘obvious’ temperature dependence, as the fourth dimension has disappeared. All the
temperature dependence is ‘buried’ in the parameters of the dimensionally reduced model.

The general arguments leading to the formulation,and applicability or the three dimen-
sional effective theory are very convincing, but, as the authors pointed out, cross checks with
the full four dimensional simulations are needed.

4.4 The Phase Diagram of the EW Sector of the Standard Model

In Figure 5, reproduced from the Laine-Rummukainen review of 1998 ref. [7], we see the
phase diagram of the electroweak sector of the standard model, built by use and cross checks
of the results obtained by the methods described above.

For small values of the Higgs mass mH < mW the transition is strongly first order, and
weakens (in the sense discussed in Section 3 above) when mH increases. These results can be
obtained in perturbation theory. For large Higgs mass (mH > mW ) perturbation theory is
no longer applicable, and a combination of lattice calculations of the four dimensional theory
and of the (perturbatively reduced) three dimensional theory gives fully satisfactory results.

The endpoint was discovered in [9]. The nature and location of the second order endpoint,
the most important result, has been actively investigated since then. From a phenomeno-
logical point of view, it is important to notice the transition ends at a value smaller than
realistic Higgs masses.

The dotted line is the perturbative result reviewed in Section 4.1 : the limitation of the
perturbative analysis is evident from the plot.

The fact that at small mass there is no phase transition, i.e. the discovery of the end
point shows that there is no sharp distinction between the symmetric and broken phase of
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Figure 5: The phase diagram of the Electroweak Sector of the standard model in the temperature, Higgs
mass plane, taken from Laine-Rummukainen [7]

the electroweak sector of the standard model, much like between liquid water and vapor. For
instance, in principle massive W bosons in the broken phase cannot be distinguished from
massive, composite objects in the symmetric phase.

Current research investigates the fate of these results in various supersymmetric exten-
sions of the Standard Model [7] [8]. Of particular interest is the possibility that the line of
first order phase transition continues up to realistic Higgs masses.

5 Thermodynamics of Four Fermions Models

Models discussed so far only included bosons. As a warmup for the study of QuantumChro-
modynamics we discusse here purely fermionic models. Besides their illustrative value, such
models can offer some insight into real QCD. In a nutshell, the idea is that the interaction
between the massive quark can be described by a short range (in effect, contact) four-fermion
interaction – to be specific, let us just remember the effective Lagrangian with the t’Hooft
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instanton-mediated interaction:

LI = KI [(ψ̄ψ)2 + (ψ̄iγ5~τψ)2 − (ψ̄~τψ)2 − (ψ̄γ5ψ)2] (51)

In the standard treatment of this effective Lagrangean spontaneous mass generation is im-
posed by fiat, and the resulting Lagrangean contains a mass term

Leff = ψ̄(iγµDµ −m⋆ + µγ0)ψ − 1/4FµνF
µν + Lint (52)

which explicitely breaks the global chiral symmetry of (51).
More generally, and perhaps more interestingly, fermionic models with a contact four

fermion interaction display, in a certain range of parameters, spontaneous symmetry breaking
and dynamical mass generation. They are thus a playground to study these phenomena in
ordinary conditions, together with their fate at high temperature and density. This, besides
being helpful to study QCD, it is also important from a more general point of view. A caveat
is however in order before continuing: these models cannot describe confinement.

This section is devoted to the study of the thermodynamics of four fermion models
with exact global chiral symmetry, see [26] [27] [28] [29] for early studies, reviews, details
and recent developments. In a thermodynamics context, an important observation is that
purely fermionic systems do not have zero modes, because of their antiperiodic boundary
conditions. Hence, they are not amenable to direct dimensional reduction. We will see
how the bosonised form of the models helps in this, and other respects. In particular, the
bosonised form is amenable both to a simple mean field (large N) analysis,as well as to an
exact lattice study.Let us also mention right at the onset, that these models (as opposed to
QCD) can be studied exactly be means of lattice calculations also at nonzero density.

0
1/g

Σ = 0

c

Σ =/= 0

Figure 6: The phase diagram of the 3d Gross–Neveu model at T = µ = 0. In the large coupling region
the model has spontaneous symmetry breaking, and in that region is interesting to study the effects of
temperature and chemical potential, which might have some similarity to QCD. The symmetric region is not
relevant for thermodynamics.

The be specific, from now on we will concentrate on the 3dimensional Gross Neveu model,
described by the Lagrangian

L = ψ̄(/∂ +m)ψ − g2/Nf [(ψ̄ψ)2 − (ψ̄γ5ψ)2] (53)

The model is invariant under the chiral symmetries Z2 and U(1)

ψi → eiαγ5ψi (54)

ψ̄i → ψ̄ie
iαγ5 (55)

The main properties of interest are:
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• For large coupling, at T = µ = 0, it displays spontaneous symmetry breaking, Gold-
stone mechanism and dynamical mass generation

• It has a rich meson spectrum, including a ‘baryon’ (infact, the fermion

• It has a non–trivial (interacting) continuum limit

• It is amenable to an exact ab initio lattice study

As mentioned above, its analytic and numerical study is helped by auxiliary bosonic fields
σ, ~π. σ and ~π can be introduced by adding to L the irrelevant term (ψ̄ψ+ σ/g2)2 + (ψ̄γ5ψ+
iπγ5/g

2)2. L then becomes(we set m = 0):

L = ψ̄(/∂ + σ + iπγ5)ψ +Nf/2g
2(σ2 + π2) (56)

The continuous symmetry of the system is now reflected also by the rotation in the (σ, ~π)
chiral sphere.

A simple mean field analysis reveals the phase structure of the model at T = µ = 0 which
we skecth in Fig. 5. This is obtained by solving for the expectation value of the dynamical
fermion mass Σ ≡< σ > via the gap equation

Σ = g2
∫

p
tr

1

i/p+ Σ
(57)

yelding
1

g2
= −

∫

d3p

p2 + Σ2
(58)

We find the solution Σ 6= 0, which breaks chiral symmetries, if

1

g2
<

1

g2
c

=
2Λ

π2
(59)

(where Λ is the ultraviolet cutoff in the momentum integral above), hence the phase diagram
of Fig.5

Consider now the effects of temperature or density, i.e. we ideally add another axes
to the phase diagram of Fig. 5. If we start increasing temperature and density from the
symmetric phase, things do not change much, while in the broken phase high temperature
and/or density lead to the restoration of the chiral symmetries. This is intuitive if we just
consider the disorder induced by temperature (of course the spins will become disorded in
chiral space, not in the real one). This behaviour can be revelaed by a mean field analysis.
Let us first introduce explicitely temperature, as discussed in Sect. 2.3, by replacing the
intergral over time by a sum over discrete Matsubara frequencies

∫

d3p→
∑

Matsubarafrequencies

∫

d2p (60)

and then include a chemical potential µ for baryon number Nb by adding to the Lagrangean
a term µNb:

µNB → µJ0 = µψ̄γ0ψ (61)
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(remember J0 is the 0-th component of the conserved current ψ̄γµψ). All in all, the finite
temperature–finite density generalisation of eq. 54 reads:

1

g2
= 4T

n=+∞
∑

n=−∞

∫

d2p

2π2

1

((2n− 1)πT − iµ)2 + p2 + Σ2(µ, T )
(62)

We can now eliminate the coupling in favour of Σ0 = Σ(T = 0, µ = 0)

Σ − Σ0 = −T [ln(1 + e−(Σ−µ)/T ) + ln(1 + e−(Σ+µ)/T ] (63)

This gives the behaviour of the order parameter at fixed temperature as a function of µ. A
chiral restoring phase transition is apparent for any temperature. At T = 0 the transition is
(very strongly) first order, and occurs for µc = mF (µ = 0), as expected of simple models. For
any other temperature the transition is second order, and µc gets smaller and smaller while
increasing the temperature, eventually becoming 0 at T = Tc. A similar calculation gives the
equation of state, in particular for T = 0 the baryon number Nb is seen to (approximatively)
follow the prediction of a free (massless) fermion gas Nb ∝ µ3. The behaviour of the order

0.0 0.5 1.0
T/Σ0

0.0

0.5

1.0

µ/Σ0

Figure 7: The phase diagram of the 3d Gross–Neveu model in the T, µ plane. The coupling has been
selected in such a way that the model is in the symmetry broken phase at T = µ = 0. Chiral symmetry
restoration at large T, µ is observed either in mean field calculation (solid line) and exact lattice simulations
(points). Taken from S. Hands, ref. [28]

parameter can be used to draw the phase diagram in the temperature–chemical potential
plane, Figure 5
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But what happens beyond mean field? Or, equivalently, what happens when the number
of flavor decreases from infinite to any finite number? (the results of the mean field analysis
can be shown to be equivalent to the leading order of a 1/Nf expansion). Although it is
possible to calculate 1/NF corrections it is clearly desirable to have some exact results. For
instance, one wants to find out exactly the position of the tricritical point where the first
order line merges with the second order one (mean field predicts µ = 0). Or, one might
inquire about the stability of the nuclear matter phase, i.e. for which range of temperature
one can excite massive fermions, before restoring the chiral symmetry? These and other
points have been studied in [29]: the authors have shown that dimensional reduction is valid
at the finite T transition, discussed the existence of a tricritical point and the possibility of
a nuclear liquid–gas transition. Clearly these aspects depend on the exact dynamics. We
have seen in the discussion on the electroweak transition that mean field can give completely
misleading indications. A feeling about the relevance of the quantum corrections in this
model can be obtained by comparing the phase diagram obtained on the lattice, and via the
mean field calculation described here (see Figure 7) : we note that there is no qualitative
change, however there are sizeable differences.

Let us summarize: the phase diagram of four fermion models can be studied within a
self consistent mean field approach, equivalent to a leading order expansion in 1/Nf . These
models are amenable to an exact lattice study (at variance with QCD whose lattice study,
as we shall see, is limited to µ = 0). The results available on the lattice, while confirming
many qualitative trends, show also significant deviations from a simple mean field analysis.
Going from simple calculations of simple models to exact calculations of the same models
can give interesting, new information, and much is still to be done in this field.

6 The Phases of QCD

Let us recall the symmetries of the QCD action with Nf flavors of massless quarks, coupled
to a SU(Nc) color group:

SU(Nc)C × SU(Nf ) × SU(Nf ) × ZA(Nf) (64)

SU(Nc) is the gauge color symmetry. SU(Nf ) × SU(Nf ) × ZA(Nf ) is the flavor chiral
symmetry, after the breaking of the classical UA(1) symmetry to the discrete ZA(Nf).

We want to study the realisation and pattern(s) of breaking of the chiral symmetries and
we would like to know the interrelation of the above with the possibility of quark liberation
predicted at high temperature and density[31].

The first task – fate of the chiral symmetries – is made difficult by the problems with
simulating QCD with three colors at finite baryon density. Aside from this, the tools for
investigating the transition are all at hand: significant results at finite temperature have
been obtained from first principle calculations on the lattice, while the phase diagram of
the two color model (which can be simulated at nonzero baryon density) is well underway.
For a recent phenomenological approach to finite density QCD, not discussed here, we refer
again to [13]. The second task – confinement – poses more conceptual problems. It can be
addressed satisfactorily only in Yang Mills systems, which enjoy the global Z(Nc) symmetry
of the center of the gauge group. When light quarks enter the game, the global Z(Nc)
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symmetry is lost, and the simple description of confinement in terms of such symmetry is
not possible any more.

In normal condition (zero temperature and density) the SU(Nf )L × SU(Nf )R chiral
symmetry is spontaneously broken to the diagonal SU(Nf )L+R. This should be signaled by
the appearance of a Goldstone boson, and a mass gap. In the real world, as such a symmetry
is only approximate, the would be Goldstone is not exactlyt massless, but it is neverthless
lighter than any massive baryon –i.e. there is a ‘relic’ of the mass gap. All of them can be
described by chiral perturbation theory, where the small expansion parameter is, essentially,
the bare quark mass.

Most dramatic dynamical features of QCD are confinement and asymptotic freedom: in
ordinary condition quarks are ‘hidden’ inside hadrons, i.e. all the states realised in nature
must be color singlet. If one tries to ‘pull’ one quark and one antiquark infinitely apart,
the force between them grows with distance–which is also called infreared slavery. At short
distance, instead, quarks are nearly free: this is called asymptotic freedom.

In summary, these are the features of QCD we shall be concerned with in the next two
Sections:

• Asymptotic freedom

• Confinement

• Spontaneous chiral symmetry breaking

Confinement and relisation of chiral symmetry depend on the thermodynamic conditions,
and on the number of flavors and colors. Asymptotic freedom does not depend on thermo-
dynamics: it holds true till

Nf < 11/2Nc (65)

For T = µ = 0 there is then a line (see Fig. 6) in the Nc,Nf plane separating the ‘ordinary’
phase of QCD from one without asymptotic freedom. More exotic phases have been predicted
as well [36], but it is anyway well established that it does exhist a region in the Nf , Nc

plane which is characterised by confinement, spontaneous chiral symmetry breaking and
asymptotic freedom. The third axes can represent either temperature and density: one
might well imagine that the any point belonging in the same sector of the phase diagram in
Fig. 6 would behave in a similar way while increasing temperature and density. It is then
interesting to study the thermodynamics of models with different Nc and Nf , looking for
similarities and differences.

In the discussion of the next two Sections we will consider Nc = 3, the real world, and
Nc = 2, for technical reasons, and because it represents an interesting limiting case. We will
discuss the Yang Mills model, which also describes QCD with quarks of infinite mass. We
will mostly discuss two light flavors, which is rather realistic, as the up and down quarks
are much lighter than any other mass. Understanding the behaviour with three flavor is
important as well, as in the end the real world is somewhere in between Nf = 2 and Nf = 3.

7 QCD at Finite Temperature, µB = 0

Disorder increases with temperature. Then, one picture of the high T QCD transition can
be drawn by using the ferromagnetic analogy of the chiral transition mentioned in Section 2:
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Figure 8: The phase diagram QCD in the Nf , Nc, and thermodynamic parameters space. The everyday
world corresponds to Nc = 3, Nf = 2 (approximatively), T = µ = 0. For T = µ = 0 there is a line in the
Nc,Nf plane separating the ‘ordinary’ phase of QCD from one without asymptotic freedom.

ψ̄ψ can be thought of as a spin field taking values in real space, but whose orientation is in
the chiral sphere. Chiral symmetry breaking occurs when < ψ̄ψ >6= 0, i.e. it corresponds to
the ordered phase. By increasing T, < ψ̄ψ >→ 0. This is very much the same as in the Gross
Neveu model of Section 5. Color forces at large distance should decrease with temperatre:
the main mechanism, already at work at T = 0, is the recombination of an (heavy) quark
and antiquark with pairs generated by the vacuum: Q̄Q → q̄Q + qQ̄. At high temperature
it becomes easier to produce light q̄q pairs from the vacuum, hence it is easier to ‘break’
the color string between an (heavy) quark and antiquark Q̄Q. In other words, we expect
screening of the color forces. It is however worth mentioning that, even if the string ‘breaks’
bound states might well survive giving rise to a complicated, non–perturbative dynamics
above the critical temperature. The physical scale of these phenomena is the larger physical
scale in the system, i.e. the pion radius (cfr. the discussions in Section 2).

There are two important limits which are amenable to a symmetry analysis : mq = 0
and mq = ∞.
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7.1 QCD High T P.T., and Symmetries I : mq = 0 and the Chiral

Transition

When mq = 0 the chiral symmetry of eq.(64) is exact. As both mu and md are much smaller
than ΛQCD , this is a reasonable approximation. Note the isomorphy

SU(2) × SU(2) ≡ O(4) (66)

which shows that the symmetry is the same as the one of an O(4) ferromagnet. The relevant
degrees of freedom are the three pions, and the sigma particle, and the effective potential is
a function of σ2 + |π|2 in the chiral space. Once a direction in the chiral sphere is selected
(say in the σ direction) chiral symmetry is spontaneously broken in that direction, according
to the pattern: equivalently

SU(2)R × SU(2)L → SU(2)L+R (67)

O(4) → O(3) (68)

Massless Goldstone particles (in this case, the three pions) appear in the direction ortogonal
to the one selected by the spontaneous breaking.

Combining this symmetry analysis with the general idea of dimensional reduction, Pis-
arski and Wilczek [20] proposed that the high temperature transition in the two flavor QCD
should be in the universality class of the O(4) sigma model in three dimensions. At high
temperature when symmetry is restored there will be just one global minimum for zero value
of the fields, and pion and sigma become eventually degenerate.

We have however to keep in mind possible sources of violation of this appealing scenario
(see [37] for recent discussions).

Firstly, is the very nature of the symmetry which is restored across the transition. [20]
[38] Note infact that the σ model picture assumes that the axial U(1) symmetry remains
broken to Z(Nf) across the phase transition, in such a way that it does not impact on the
critical behaviour. This is indeed a dynamical question – which symmetry is restored first –
which can only be answered by an ab initio calculation.

One second possible source of violation of this scenario relates with a strong deconfin-
ing transition happening for its own reasons. Such deconfining transition would liberate
abrubtely an huge amount of degrees of freedom, and would likely trigger also the restora-
tion of chiral symmetry. In this case, the chiral transition would be hardly related with the
sigma model.

And there are also practical considerations: maybe the scenario is true, but the scaling
window is so small that it has no practical applicability or relevance. One example of this
behaviour is offered by the Z(Nf) × Z(Nf ) 3 dimensional Gross-Neveu model. Its high T
phase transition should be in the universality class of the Ising model, but the scaling window
turns out to be only 1/Nf wide, i.e. it shrinks to zero in the large Nf (mean field) limit, in
which case dimensional reduction is violated.

All in all, one has to resort to numerical simulations to measure the critical exponents,
and verify or disprove the O(4) universality. In turn, this gives information on the issues
(nature of the chiral transition, role of deconfinement, heavy modes decoupling, etc.) raised
above.
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In practice, one measures the chiral condensate as a function of the coupling parameter
β, which in turns determines the temperature of the system. This gives the exponent βmag
(remember the discussions in Section I) according to

< ψ̄ψ >= B(β − βc)
βmag (69)

The exponent δ is extracted from the repsonse at criticality:

< ψ̄ψ >= Am1/δ; β = βc (70)

The results (we quote only ref. [37] as there is a substantial agreement) : βmag = .27(3),
δ = 3.89(3) compare favourably with the O(4) results βmag = .38(1), δ = 4.8(2), and
definitively rule out mean fields exponets (which would have characterised a weak first order
transition). However, the results can still be compatible with O(2) exponents, which would
signal the persistence of some lattice artifact, βmag = .35(3), δ = 4.8(2), and of course it is
still possible that the final answer do not fit any of the above predictions, for instance one
is just observing some crossover phenomenon.

7.2 Two Color QCD I

Two color QCD ejoys an enlarged (Pauli–Gürsey) chiral symmetry: quarks and antiquarks
belong to equivalent representation of the color group (see for instance the first entry of [47],
and references therein) . As a consequence of that the ordinary chiral symmetry of QCD

SU(Nf ) × SU(Nf ) (71)

is enlarged to SU(2Nf ). The spontanoues breaking of SU(2Nf) then produces a different
pattern of Goldstone bosons, which includes massles baryons (diquarks). The relevant sigma
model in this case includes also diquarks and antidiquarks Because of this symmetry, we have
an exact degeneracy of the pion, scalar qq and scalar q̄q̄ and of the scalar meson, pseudoscalar
qq and pseudoscalar q̄q̄ : this is precisley the reason why we have massless baryons in the
model, and thus why this is not, a priori, a good guidance to QCD at finite baryon density
(to be discussed in Section 8).

The Pauli–Gürsey symmetry has implications on the universality class of the chiral transi-
tion at high temperature: for instance, the predictions of universality+dimensional reduction
for the two color, two flavour is O(6) critical exponents [39]. The general argument is clear,
but it has been fully appreciated and studied only recently. Also, this tells us that qualitative
arguments relating the universality class of the chiral transition to the flavour, but not to the
color group, have to be used with care: at least for two color QCD, which is an interesting
limit case, the number of color matters for the high temperature chiral transition as well.

7.3 QCD High T p.t., and Symmetries II : mq = ∞ and the Con-

finement Transition

When mq = ∞ quarks are static and do not contribute to the dynamics : hence, the dynamic
of the system is driven by gluons alone, i.e. we are dealing with a purely Yang-Mills model:

S = FµνF
µν (72)
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In addition to the local gauge symmetry, the action enjoys the global symmetry associated
with the center of the group, Z(Nc). The order parameter is the Polyakov loop P

P = ei
∫ 1/T

0
A0dt (73)

In practice, P is the cost of a static source violating the Z(Nc) global symmetry.
The interquark potential V(R,T) (R is the distance, T is the temperature) is

e−V (R,T )/T ∝< P (~0)P †(~R) > (74)

Confinement can then be read off the behaviour of the interquark potential at large distance.
When V (R) ∝ σR it would cost an infinite amount of energy to pull two quarks infinitely
apart. Above a certain critical temperature V (R) becomes constant at large distance: i.e.
the string tension is zero, confinement is lost. The implication of this is that |P |2 = V (∞, T )
is zero in the confining phase, different from zero otherwise. P plays thus a double role,
being the order parameter of the center symmetry, and an indicator of confinement (for
an alternative symmetry description of the pure gauge deconfinement transition see [40]).
We learn that in Yang Mills models there is a natural connection between confinement and
realisation of the Z(Nc) symmetry. Hence, the confinement / deconfinement transition in
Yang Mills systems is amenable to a symmetry description. By applying now the same
dimensional reduction argument as above, we conclude that the Universality class expected
of the three color model is the same as the one of a three dimensional model with Z(3)
global symmetry: this is the three state Potts model discussed in Section 3.3. Indeed, the
transition turns out to be ‘almost’ second order, i.e. very weakly first order, like the 3d three
state Potts model, see [41] for review and phenomenological implications of this observation.

7.4 Two Color QCD II

The same reasoning tells us that the two color model is in the universality class of the
three dimensional Z(2) (Ising) model. This prediction has been checked with a remarkable
precision [21], and it is a spectacular confirmation of the general idea of universality and
dimensional reduction.

Source SU(2) Ising
< |L| > β/ν 0.525(8) 0.518(7)

D < |L| > (1 − β)/ν 1.085(14) 1.072(7)
1/ν 1.610(16) 1.590(2)
ν 0.621(6) 0.6289(8)
β 0.326(8) 0.3258(44)

χν γ/ν 1.944(13) 1.970(11)
Dχν (1 + γ)/ν 3.555(15) 3.560(11)

1/ν 1.611(20) 1.590(2)
ν 0.621(8) 0.6289(8)
γ 1.207(24) 1.239(7)

γ/ν + 2β/ν 2.994(21) 3.006(18)
gr − g∞r 1.403(16) 1.41
Dgr 1/ν 1.587(27) 1.590(2)

(ω = 1) ν 0.630(11) 0.6289(8)
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Taken from J. Engels, S. Mashkevich, T. Scheideler and G. Zinovjev, ref. [21]

7.5 Summary and Open Questions for the QCD High T Transition

In Figure 7 we sketch a phase diagram in the temperature, bare mass plane for a generic
version of QCD with Nf flavor degenerate in mass, and Nc color.

For zero bare mass the phase transition is chiral. For three colors, two flavors is second
order with Tc ≃ 170Mev. The prediction from dimensional reduction + universality –
O(4) exponenents– is compatible with the data, but the agreement is not perfect. If the
agreement were confirmed, that would be an argument in favour of the non-restoration of
the UA(1) symmetry at the transition, which is also suggested by the behaviour of the masses
spectrum. Remember infact that the chiral partner of the pion is the f0, which is in turn
degenerate with the scalar a0 with UA(1) is realised. All in all, UA(1) non–restoration across
the chiral transition corresponds to mπ ≃ mf0 6= ma0 which is the pattern observed in lattice
calculations [34]. The transition with three (massless) flavour turns out to be first order.
The question is than as to whether the strange quark should be considered ‘light’ or heavy’.
In general, the real world will be somewhere in between two and three light flavour, and
to really investigate the nature of the physical phase transition in QCD one should work as
close as possible to the realistic value of the quark masses.

By switching on the mass term chiral symmetry is explitely broken by m < ψ̄ψ >. In
the infinite mass limit QCD reduces to the pure gauge (Yang Mills) model. Yang Mills
systems have a deconfining transition associated with the realisation of the global Z(Nc)
symmetry. This places the system in the Ising 3d universality class for two colors, and makes
the transition weakly first order (near second, infact) for three colors. General universality
arguments are perfectly fulfilled by the deconfining transition.

The Z(Nc) symmetry is broken by the kinetic term of the action when the quarks are
dynamic (mq < ∞) : this particular symmetry description of deconfinement only holds for
infinite quark mass. Till very recently then the most convincing signals for deconfinement
with dynamical quarks come from the equation of state. For instance the behaviour of the
internal energy is a direct probe of the number of degeres of freedom, and indicates quark
and gluon liberation [34].

Another important set of information come from the behaviour of the mass spectrum–this
is of course every relevant both on experimental grounds, for the ungoing RHIC experiments
as well as for the upcoming ones, as well as for completing our understanding of patterns of
chiral symmetry. The most dramatic phenomena , i.e the disappearance of the Goldstone
mode in the symmetric phase, the nature of the Goldstone mechanism in four fermion models,
as well as the massive fermion in the broken one, have been already studied on the lattice.

Among the most prominent open questions, there is of course the behaviour of ‘real’
QCD, with two light flavour, and a third one of the order of ΛQCD, so how and when
exactly the Nf = 2 scenario morfs with the Nf = 3? Also, why is Tχ much smaller that
the pure gauge deconfining transition? At a theoretical level the question is if it is possible
to give an unified description of the two transitions, chiral and deconfining. This question
is currently under active investigation: recent work suggests that a symmetry analysis of
the deconfining transition can be extended also to theories with dynamical fermions. The
physical argument is rooted in a duality transformation which allows the identification of
magnetic monopoles as agent of deconfinement. The order parameter for deconfimenent
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would that be the monopole condensate [32]. An alternative approach uses percolation as
the common agent driving chiral and confining transitions [33].

T

mq

0

00

T

T

?

chiral

deconf.

Figure 9: The ‘phase diagram’ QCD in the quark mass, temperature plane–see text.

8 QCD at Finite Temperature, µB 6= 0

Let us now consider the effects induced by an increased baryon density, when baryons start
overlapping. The most natural prediction relates with asymptotic freedom: as the quarks get
nearer and nearer they do not feel the interactions any more, whilst the long range interaction
is screened by many body effects. The natural conclusion is that the system is ‘nearly free’
(i.e. non confining) hence chiral symmetry is realised (one needs some interaction to break
the symmetry of the action). Both on physical grounds, and from the predictions of simple
models (Gross–Neveu, Section 5) we expect the typical scale of critical phenomena at finite
density to be set by the lighter particle carrying baryon number.

First principle calculations should be able to confront these predictions, as well as results
obtained by use of semi-approximate calculations of symmetry motivated models [13] and to
put them on firm quantitative grounds.

We address here three main points:

• Why is QCD at finite density difficult

• What do we know from first principles

• What can we do, in practice

The critical region of QCD is outside the reach of perturbative calculations, then one
should use ab initio lattice methods. As most people have already heard, this is plagued by
several problems. To understand the problems, and to propose some solution, or, at least,
workaround, we have now to give some (quick) detail of these calculations.
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Consider again the partition function:

Z(µ, T ) =
∫ 1/T

0
dt

∫

eS(ψ̄,ψ,U)dψ̄dψdU (75)

A chemical potential for baryons is introducted by adding the term µJ0, where J0 = ψ̄γ0ψ
is the 0th component of the conserved particle number current. In momentum space, this
corresponds to the substitution p0 → p0 − iµ.

Let us now specialise to the QCD Action

SQCD = FµνFµν + ψ̄( 6 ∂ +m+ µγ0)ψ = SG + ψ̄Mψ (76)

and exploit the bilinear form of the fermionic part of the Action to integrate explicitely over
the fermions. This yields:

Z(T, µ) =
∫

dUdetMe−SG =
∫

dUe−(Sg−log(detM)) (77)

The partition function can be exactly written in terms of an Action which only contains
gauge field, Seff = SG − log(detM) (we often call it an effective Action, however we should
remember that no information has been lost in its definition)

Once the model is formulated on a lattice, one can express the integral over space as
a sum over the lattice sites, and the relevant observables can be calculated by use of the
importance sampling. For this to be viable, Seff should be real. The problem is that for
three colors QCD Seff is not real.

The usual numerical methods then cannot be applied. Alternative methods which have
been proposed so far fail at zero temperature, but could be applied, maybe, at nonzero
temperature [42]. Interesting new idea have been proposed, and tested in spin models [43].
All this is promising and gives some hope that at least the region around Tc, small chemical
potential can be understood in the near future, see [43] for a review on recent efforts.

There is however something else one can try within the lattice formalism, which is the
subject of the next subsection.

8.1 The Lattice Strong Coupling Analysis of the QCD Phase Di-

agram

The lattice formulation, besides being suited for statistical MonteCarlo simulations, lends
also itself to an elegant expansion in terms of the inverse gauge coupling ([45] [46]). As the
continuum limit (i.e. real QCD) corresponds to zero gauge coupling, at a first sight one
might think that the so-called strong coupling expansion is hopeless. But there is a very
important point: for two or three color QCD there are no phase transitions as a function
of coupling. Hence, many qualitative features - most important, confinement and chiral
symmetry breaking – do not depend on the gauge coupling itself. Moreover, this expansion
is systematically improvable: it is worth noticing a nice work where the asymptotic scaling
associated with the continuum limit was reached from strong coupling [44]!!

Another interesting feature is that the strong coupling expansion yields a purely fermionic
model, with four fermion interactions. Then, the strong coupling expansion can also be seen
as a tool for deriving effective models for QCD from an ab inito formulation.
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The starting point is the QCD lattice Lagrangean:

S = −1/2
∑

x

3
∑

j=1

ηj(x)[χ̄(x)Uj(x)χ(x+ j) − χ̄(x+ j)U †
j (x)χ(x)] (78)

−1/2
∑

x

η0(x)[χ̄(x)U0(x)χ(x+ 0) − χ̄(x+ 0)U †
0(x)χ(x)]

−1/3
∑

x

6/g2
4

∑

µ,ν=1

[1 − reTrUµν(x)]

+
∑

x

mχ̄χ

The χ, χ̄ are the staggered fermion fields living on the lattice sites, the U’s are the SU(Nc)
gauge connections on the links, the η’s are the lattice Kogut–Susskind counerparts of the
Dirac matrices, and the chemical potential is introduced via the time link terms eµ, e−µ

which favour (disfavour) propagation in the forward (backward) direction thus leading to
the desired baryon-antibaryon asymmetry.

We have written down explicitely the lattice Action to show that the pure gauge term
SG = −1/3

∑

x 6/g2 ∑

µ,ν=14 [1− reTrUµν(x)] contain the gauge coupling in the denominator,
hence it disappears in the infinite coupling limit. Consequently, one can perform independent
spatial link integration, leading to

Z =
∫

∏

timelinks

dUtdχ̄dχe
−1/4N

∑

<x,y>
χ̄(x)χ(x)χ̄(y)χ(y)

e−St (79)

where
∑

<x,y> means sum over nearest neighbooring links, terms of higher order have been
dropped, and we recognize a four fermion interaction. From there on things proceed formally
much in the same way as for the Gross-Neveu model discussed in Section 5, and we quote
the final result:

Z =
∫

ZV
0 d < χ̄χ > (80)

where V is the three dimensional space volume and Z0 = Z0(< χ̄χ >, T, µ) is the effective
partition function for < χ̄χ >. A standard saddle point analysis gives the condensate as a
function of temperature and density, and allows for the reconstruction of the phase diagram.

The results are the following : below a critical temperature, there is a chiral transition
as a function of chemical potential, closely correlated with a deconfining transition, from a
normal phase to a ‘quark–gluon plasma’ phase. This transition is first order, very strong at
zero temperature, and weakens with temperature, becoming second order at µ = 0, T = Tc.
The phase diagram is qualitatively similar to that of the Gross Neveu model, but for the
fact that here we have also deconfinement correlated with the chiral transition.

8.2 The Phase Diagram of Two Color QCD

At the beginning of this section it is useful to remind ourselves of the discussion in Section
7.2: in a nutshell, SU(2) baryons are completely degenerate with mesons, hence there are
massless baryons. Both on physical grounds, and from the predictions of simple models
(Gros–Neveu, Section 5) we know that the scale of critical phenomena at finite density is set
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Figure 10: A sketchy view of the phase diagram of two colors QCD for a non–zero quark
mass

by the lighter particle carrying baryon number–the massless diquark in two color QCD, and
the massive baryon in QCD. Hence, two colors QCD is not a good approximation to real
QCD at finite density.

Still, one might hope to learn something there, in particular concerning the gauge field
dynamics and screening properties at nonzero baryon density [47]. In Fig. 10 I sketch a
possible (i.e. suggested by the results of refs. [47] ) phase diagram of two color QCD, in
the chemical potential–temperature plane, for an arbitrary, non–zero bare quark mass. The
general features of the theory at zero density , i.e. the µ = 0 axis has been discussed in
Sections 7.2 and 7.4 above.

When µ 6= 0 quarks and antiquarks do not belong any more to equivalent representations:
the Pauli–Gürsey symmetry is broken by a finite density. When µ 6= 0 the symmetry
is reduced to that of ‘normal’ QCD– just because the extra symmetry quark-antiquark is
explicitely broken: the condensate will tend to rotate in chiral space as µ increases, rotating
into a purely diquark direction for large µ. However, as µ increases and the symmetry in
chiral space is reduced, and the new vacuum would be physically distinct from the original
one. According to the standard scenario, at zero temperature, for a chemical potential
µo comparable with the mass of the lightest baryons, baryons start to be produced thus
originating a phase of cold, dense matter. For SU(2) baryons (diquarks) are bosons (as
opposed to the fermionic baryons of real QCD). Besides the mass scale of the phenomenon,
there are then other important differences between the dense phase in SU(2) and SU(3), as,
obviously, the thermodynamics of interacting Bose and Fermi gases is different. In particular,
diquarks might well condense, however partial quark liberation is possible as well. We might
then expect a rather complicated “mixed” nuclear matter phase, perhaps characterised by
both types of condensates – this is the region marked by question marks in Figure 10.

To obtain a more direct probe of deconfinement, we can look at the interquark potential
by calculating the correlations < P (O)P †(z) > of the zero momentum Polyakov loops,
averaged over spatial directions. This quantity is related to the string tension σ via <
P (O)P †(z) >∝ e−σz. Some of the results of [47] suggests indeed fermion screning, enhanced
string breaking and the transition to a deconfined phase. Gauge field dynamics can also be
probed by measurements of the topological charge, as well as by the direct analysis of the
Dirac spectrum [47].
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8.3 The Phase Diagram of QCD

We reproduce in Figure 11 the phase diagram of QCD from Ref. [48].
Let us discuss the case of two massless flavors first. The transition with µ = 0 has been

discussed at lenght in Section 7.5 above : it should be second order, in the universality class
of the O(4) model. The study of the high baryon density transition at T = 0 meets with
the problems discussed before in this Section. Neverthless, the model calculations of [13],
the lattice numerical results for the Gross- Neveu model reviewed in Section 5, the lattice
strong coupling results discussed above suggests a strong first order transition. If this is the
case, a tricritical point should be found where the first order line and the second order one
merges along the phase diagram. This is the point P.

What happens if we consider light (rather than massless) up and down quarks, while still
keeping the strange very large? The possibility considered in [48] is that the second order
line turns into a smooth crossover, while the first order line is robust with respect to this
perturbation. The tricritical point now becomes the end point E of the first order transition
line. The effects of a not-so-heavy strange quark mass can be very important : remember
that the transition for three massless flavors would be first order, hence for three light flavor
should remain first order as well, and the point P would disappear. However this does not
seem likely as the mass difference between up/down and strange is sizeable.

These aspects can be studied by considering the associate Ginzburg Landau effective
potential for the order parameter < ψ̄ψ >, and the critical properties of the point E can
again be inferred by universality arguments. The same model calculations have produced
estimates for the position of the points P and E: TP ∼ 100 MeV and µP ∼ 600 − 700 MeV.
Of course these are crude estimates as only chiral symmetry and not the full gauge dynamics
was taken into account.

Most important is the observation that the critical behaviour at the point E can be
observed in ongoing and future experiments at RHIC and LHC : indeed, E would be a
genuine critical point, even with massive quarks, characterised by a diverging correlation
length and fluctuations.

This is a very interesting situation where theoretical analysis inspired by universality
arguments, lattice results at zero density, model calculations at zero temperature have lead
to a coherent picture and new predictions amenable to an experimental verifications.

What next? Imaginary chemical potential calculations might perhaps be used to gain
information around Tc and small density: this might help refining our knowledge of points P
and E. Moreover, it might well be worthwhile to extend the lattice strong coupling expansion
by 1. including further terms 2. performing a more refined analysis of the properties of the
effective potential. In particular it would be possible to study the position of P, whose leading
order estimate is at µ = 0: the transition is always first order, with the only exception
of the zero density, high temperature transition. It would be very interesting to see if
the tricritical point would indeed move inside the phase diagram. One final remark on
calculational schemes: in addition to the Lagrangean approach there is also the Hmiltonian
one[46]. Time is not discretised in the Hamiltonian approach, and for several reasons this
might seem more appropriate for dealing with a finite density. Moreoever, the remarkable
progress made by the condensed matter community on the sign problem over the last few
years might perhaps be helpful in this approach.

The scenario envisaged by [32] [33] might have an impact on the phenomenologial issues
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considered here. Infact, if there is indeed one critical line extending from the mq = 0 axis
to mq = ∞ as sketched in Fig. 8, the fate of the chiral transitions with a finite quark mass
should be reconsidered. For instance, the second order chiral transition with two massless
quarks would flow into the weak first order transition of the pure Yang Mills model in the
infinite mass limit. Hence, apparently a small quark mass would not wash out the second
order phase transition. Once again, only ab initio lattice calculations can settle the issue.

µ

T

EP

SCM

Figure 11: The schematic phase diagram of QCD, from ref. [48]. The dashed line is for the
chiral transition for two flavor QCD, which is second order at µ = 0 and most likely first
order at T=0, hence a tricritical point P in between. The solid line is the relic of such phase
transition with a small quark mass, and the tricritical point P turns into the endpoint E.
The nuclear matter phase of QCD starts beyond the short line ending by M, which can be
experimentally studied. The authors of [48] [49] have proposed experimental signatures to
demonstrate the exhistence of, and locate the point E
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